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Scattering cancellation approach has been recently proposed as a promising route to design invisibility
cloaks. However, reduced observability of an object is just one of the potential applications of this technique.
In this paper, we investigate the possibility to reduce optical forces exerted on a given nanoparticle by covering
it with a properly designed plasmonic cloak. We show, in fact, that conditions similar to those used to make
spherical and cylindrical nanoparticles invisible to the electromagnetic field by using the scattering cancellation
approach, may be straightforwardly applied also to minimize both gradient and scattering optical forces exerted
by the illuminating radiation on the same covered nanoparticles. These results are then validated through
full-wave simulations, properly considering both dispersion and losses of the plasmonic materials used to
design the cloaks. We also extend our speculations to the case of optical torques exerted on spheroidal and
cylindrical Rayleigh particles, deriving the conditions to obtain stable equilibrium positions. This investigation
leads to the anomalous result that the usual unstable equilibrium positions of uncovered particles may result
stable ones when properly designing the particle cover. Finally, in order to apply the proposed theoretical
speculations to more complex cases, we derive the conditions for minimizing optical forces exerted on a
cloaked Rayleigh particle placed above a dielectric half space. These results may find interesting applications
in different fields of nanotechnology.
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I. INTRODUCTION

Scattering cancellation technique has been recently pro-
posed as one of the possible routes to synthesize invisibility
cloaking devices.1–11 Following this approach, the scattered
field from a given object may be drastically reduced by em-
ploying a properly designed conformal plasmonic cover, ex-
hibiting an effective relative electric permittivity smaller
than unity.1 Such an engineered, in fact, produces a scattered
field which compensates the one of the bare object, thus
making the scatterer invisible. Even if initially formulated
only for canonical geometries, scattering cancellation ap-
proach has been recently extended also to arbitrarily shaped
scatterers, showing how a properly designed plasmonic shell
may be successfully used to cloak objects characterized by a
strongly anisotropic electromagnetic response.5 What is
more, the inherently nonresonant nature of this cloaking
technique makes it rather robust to slight variations in
geometrical/electrical parameters of the initial design, ensur-
ing also acceptable performances in terms of operating
bandwidth.6 Such promising properties, encouraged some
groups to work also on the synthesis of actual cloaks, work-
ing both at microwave and optical frequencies.7–11

So far, most of the research efforts concerning scattering
cancellation have been focused in making a cloaked object
nearly transparent to the illuminating electromagnetic radia-
tion. As clearly demonstrated in Refs. 1–3, this phenomenon
is inherently related to the dispersive nature of the plasmonic
material used for the cloak, which, in the long-wavelength
limit, is characterized by a locally negative polarizability
compensating the electric dipole scattering contribution due
to the object.

In the Rayleigh approximation, however, if the object di-
mensions approach the nanoscale, optical forces come into

play, and their contribution cannot be neglected any more. As
early speculated in Ref. 12, metamaterials and plasmonic
media may allow to control such forces through their inher-
ent dispersive behavior. This implies, for instance, that it is
possible to manipulate light forces simply by changing the
material characteristics or the operating frequency. Typically,
light forces on electrically small particles are explained in
terms of gradient and scattering forces.13 The former are di-
rectly related to the interaction between the external field and
the induced dipole, which is drawn by the field-intensity gra-
dients. The latter are related to the momentum transfer be-
tween the scattered field and the illuminated particle, being
proportional to the Poynting vector.13,14 Since both these
forces are inherently associated to the scattering properties of
the object, it is interesting to study their behavior when a
cloak placed around a nanoparticle causes the reduction, or
even the suppression, of the total scattered field.

The aim of this paper is to combine optical force calcula-
tion to the electromagnetic cloaking formulation, in order to
obtain further physical insights and explore new possibilities
for the manipulation of nanostructures with promising results
for several applications in current nanotechnology. The struc-
ture of the paper is as follows. In Sec. II, starting from the
relation between optical forces exerted on a covered nano-
particle and its polarizability, we derive the conditions under
which it is possible to minimize the forces acting on spheri-
cal and cylindrical Rayleigh particles, illuminated by a po-
larized light. In Sec. III, we extend the formulation reported
in Sec. II to the case of optical torques exerted on elongated
particles, deriving conditions for stable and unstable equilib-
rium positions. Finally, in Sec. IV, in order to apply the pro-
posed idea to a more complex configuration, we derive the
conditions for minimizing optical forces exerted on a
cloaked Rayleigh particle placed above a dielectric half
space.
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II. OPTICAL FORCES ON RAYLEIGH PARTICLES

Optical forces acting on a nanoparticle can be derived
from the conservation of the linear momentum introducing
Maxwell’s stress tensor.13 Without loss of generality, we may
consider an object made of an isotropic homogeneous dielec-
tric, surrounded by vacuum and illuminated by a time har-
monic electromagnetic field �excitation of the kind ej�t is
assumed throughout the paper�. Neglecting the particle mo-
tion and assuming mass density and optical properties of the
object to be constant with respect to the exerted pressure, the
time average force �F� exerted on the particle is given by13,15

�F� =
1

4
Re��e� � �E0�2 +

�t

2c
Re�E0 � H0

��

+
�t

2k0
Im��0�E0

� · ��E0� , �1�

where Re� � � and Im� � � are real and imaginary parts, respec-
tively, � � �� complex conjugation, k0=� /c the free-space
wave number, �t the total scattering cross-section �SCS�, and
�e the electric polarizability of the object. In the Rayleigh
approximation, any given object with anisotropic scattering
properties may be described by its polarizability tensor
�� e.

16,17 For highly symmetrical small scatterers, the polariz-
ability tensor may be assumed as a scalar quantity �e while,
for more complex geometries, a similar approach may be
still used, assuming the polarizability tensor to be uniaxial in
a convenient coordinate system oriented along the three main
axes of the scatterer.18 By means of the optical theorem19 we
can straightforwardly express �t in terms of the electric po-
larizability of the object as

�t =
k0

�0
Im��e� . �2�

Therefore, in Eq. �1� we distinguish three terms, related to
the acting forces on the particle: the first one is the gradient
force, the second one is the scattering force or radiation
pressure, and the third one, which is generally neglected in
the case of electrically small objects,20 has been recently
associated to the time-averaged spin density of a transverse
electromagnetic field.15

According to Eq. �1�, by nullifying the complex electric
polarizability �e �both real and imaginary parts�, we are able
to contemporary minimize all the force contributions acting
on Rayleigh scatterers. In the following, we show how it is
possible to achieve such condition by using scattering can-
cellation approach, in the general case of lossy materials de-
scribed by proper dispersion models.

A. Spherical nanoparticles

Let us consider, as a first example, the case of a spherical
particle of radius a and permittivity function ����=�0�r���.
Due to the symmetry of the problem, the electric polarizabil-
ity does not depend on the polarization of the electric field.
In the limit k0a�1, the electric polarizability �e

s��� is given
by15,21

�e
s��� =

�e
0���

1 − j
k0

3�e
0���

6��0

, with �e
0��� = 3�0V

�r��� − 1

�r��� + 2
,

�3�

where the radiation-reaction term �due to the interaction of
the dipole with its own radiated field� has been introduced, in
order to satisfy the optical theorem.13,15 It is worth noticing
that optical force formulation, derived through Maxwell’s
stress tensor, is fully consistent with the approach based on
the Lorentz force calculation.22

From Eq. �3�, it may be easily derived that an electrically
small sphere, made of a regular dielectric material with �r
	1, will always experience an acting optical force, accord-
ing to Eq. �1�. Let us assume, now, that the scatterer is made
of a material whose relative permittivity �r��� follows Drude
dispersion model as

�r��� = �
 −
�p

2

��� − j�c�
, �4�

being �p the plasma frequency, �
 the upper frequency per-
mittivity limit, and �c the damping factor. As it results from
the expression of �e

s, the complex polarizability exhibits a
resonant behavior at �=�r, where the plasmonic resonance
occurs for �r��r�=−2, thus implying that Re��e

s��r��=0
while Im��e

s��r�� reaches its maximum. As it is well know,
in this case, the radiation pressure term is enhanced by the
plasmonic nature of the material at the resonance frequency.
On the other hand, being the real part of �e

s almost zero at
�r��r�=−2, the gradient force term is significantly reduced,
even if ��E0�2�0, as it may be generally assumed. Only
under plane-wave illumination, in fact, the first and the last
terms of Eq. �1� are identically zero,15 being the radiation
pressure, which is proportional to the Poynting vector, the
only force contribution acting on the scatterer.

Now, if we cover the scatterer with a plasmonic shell of
radius b and relative permittivity �c���, the overall polariz-
ability �e

cs of the rigid covered particle, may be consistently
expressed as23,24

�e
cs��� =

�e
0���

1 − j
k0

3�e
0���

6��0

,

�e
0��� = 4�b3�0

�
b3��c − 1��2�c + �r� − a3�2�c + 1���c − �r�
b3��c + 2��2�c + �r� − 2a3��c − 1���c − �r�

,

�5�

where the frequency dependence of the permittivities has
been omitted for sake of brevity. In the limit case �c→1, we
obtain the polarizability of the bare sphere �e

s���, otherwise,
according to theory developed in Ref. 1, for any given rela-
tive permittivity �r of the inner particle, it is possible to
determine a certain range of permittivity values for the cover
material, which allow nullifying contemporarily both real
and the imaginary parts of the complex polarizability �e

cs���.
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In order to clarify these aspects, let us consider an ex-
ample. The inner core of a coated spherical particle is made
of a regular dielectric with �r=2 while the external shell is
made of a Drude-type dispersive and lossy material. Accord-
ing to Eq. �5�, for a certain value of the permittivity �c��0� at
the design frequency �0, we may find an optimal ratio be-
tween the radii �=a /b, assuring that �e

cs��0��0, thus im-
plying that Re��e

s��0��=0, while keeping the imaginary part
extremely low. In Fig. 1, we show the complex polarizability
as a function of the normalized frequency � /�p and � with
�c=10−2�p.

From these plots, we note that there is a frequency region
in the dielectric plane described by �c��� and �r, in which
the condition �e

cs��0��0 is satisfied �in Fig. 2 we show one
of the zero occurrences for ��0.67�.

Polarizability cancellation effect is certainly affected
when increasing losses, that is when varying the collision
frequency �c in the model. However, it is worth noticing that,
being the scattering cancellation approach based on a non-
resonant phenomenon, we can reasonably assume that losses
are generally sufficiently small in the frequency range of
interest. Nevertheless, even considering moderately higher
losses, it is still possible to obtain the desired behavior, as
shown in Fig. 3, where a dependence �c=10−��p for the
collision frequency is assumed.

B. Cylindrical nanoparticles

The proposed formulation is certainly consistent also
when describing two-dimensional configurations, that is
when considering, for instance, nanorods and wires with
electrically small cross-sections. In this case, it is possible to
evaluate the acting forces simply by introducing the proper
polarizability,13 according to the previous analysis. Let us
consider, then, the case of a circular cylinder of radius a,
infinitely extended along its symmetry axis �Fig. 4�. Refer-
ring to the main polarizations of the impinging field, we can
define two different polarizabilities �e

	 ��� and �e
����, de-

pending on whether the illuminating electric field is parallel
or perpendicular to the cylinder axis �ẑ�, respectively.

For an electrically small cylinder with permittivity ����
=�0 �r���, polarizability �e

	 ��� may be expressed through a
series expansion of the zeroth order Mie scattering coeffi-
cient as25

�e
	 ��� =

�e
p���

1 − j
k0

2

4�0
�e

p���
, �e

p��� = �a2�0��r��� − 1� �6�

while for the orthogonal polarization �e
���� can be similarly

written as26

�e
���� =

�e
o���

1 − j
k0

2

4�0
�e

o���
, �e

o��� = �a2�0
�r��� − 1

�r��� + 1
. �7�

Looking at expressions �6� and �7�, it follows that also in this
case, for any �r
1, the object experiences an acting force in
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FIG. 2. �Color online� Complex polarizability �normalized to its
maximum value� for a dielectric electrically small spherical particle
covered with a plasmonic coating, whose permittivity follows
Drude dispersion for ��0.67. The shadowed area indicates the
frequency region in which the complex polarizability is almost zero.
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FIG. 1. �Color online� Complex polarizability of a dielectric electrically small spherical particle covered with a plasmonic coating whose
permittivity follows Drude dispersion. Real and imaginary parts of the polarizability are normalized to their relative maximum values.
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both the polarizations. If the cylinder is made of a plasmonic
material, �e

� shows a resonant behavior similar to the one of
a small sphere, this time with the material resonance occur-
ring at �r��r�=−1. It is worth noticing that, even if the cyl-
inder is assumed to be infinitely long, the approach still ap-
plies for finite-length wires, provided that the effective
length L of the object is comparable to the operating
wavelength.27

Again, when coating the cylinder with an external shell of
radius b, as reported in Fig. 4 �right panel�, the total polar-
izabilities in the main polarizations �e,c

	 and �e,c
� are given by

�e,c
	 ��� =

�e
cp���

1 − j
k0

2

4
�e

cp���
,

�e
cp��� = ��0a2��r��� − 1� − ��0�b2 − a2���c��� − 1� �8�

and

�e,c
� ��� =

�e
co���

1 − j
k0

2

4
�e

co���
,

�e
co��� = �b2�0

b2��c − 1���c + �r� − a2��r + 1���c − �r�
b2��c + 1���c + �r� − a2��c − 1���c − �r�

.

�9�

In Fig. 5, we show the complex polarizability of a coated
nanorod consisting of a dielectric inner core with �r=2 and
a lossy plasmonic external shell whose permittivity is mod-
eled through a Drude-type dispersion model, as a function
of the normalized frequency � /�p and �=a /b, assuming
�c=10−2�p.

According to Eq. �9�, at a given pair ��0 ,�� it may result
�e,c

� ��0��0, thus implying that no force is exerted on the
object for that polarization. As in the spherical case, moder-
ately high losses still allows to obtain the cancellation effect,
as reported in Fig. 6.

For more complex geometries, as recently shown in Ref.
8, it is still possible to use conformal plasmonic coatings to
effectively cloak the object, even in the case the scatterer
shows a strong anisotropic electromagnetic response. More-
over, for moderately low dielectric contrasts, Rayleigh par-
ticles should exhibit polarizability values very close to the
ones of an isovolumetric sphere, thus implying that similar
considerations may be straightforwardly applied even for
noncanonical shapes.

III. OPTICAL TORQUE FOR CLOAKED
RAYLEIGH PARTICLES

Starting from Eq. �1�, we can derive the intrinsic optical
torque � acting on a small particle under Rayleigh approxi-
mation. For a dielectric object illuminated by an external
field E0, the induced dipole p leads to an electric torque
which, adding the radiation-reaction term to the static polar-
izability �e

0, is given by22,28

� =
1

2
Re
p � � p

�e
0��
 . �10�

Consequently, the torque-vector magnitude is directly pro-
portional to �e

0 and all the considerations done in the previ-
ous sections still apply. Interestingly, since in the more gen-

cs
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� ���
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eα� �

� ���

pω ω

σ

pω ω

σ

FIG. 3. �Color online� Normalized complex polarizability for a dielectric electrically small spherical particle covered with a plasmonic
coating, whose permittivity follows Drude dispersion, for ��0.67 and assuming losses to vary according to �c=10−��p.

ŷ ŷ

ẑ

x̂a
ẑ

x̂a

b

FIG. 4. �Color online� Cylindrical nanorod of radius a infinitely
extended along its symmetry axis �left�. Cylindrical nanorod of ra-
dius a infinitely extended along its symmetry axis and covered with
a plasmonic shell of radius b.
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eral case the polarizability is a tensor and p=�� e��� ·E0, the
torque magnitude depends not only on the orientation of the
impinging field but also on the elements of �� e���. This im-
plies that the stability of the configuration may change when
coating an object with a plasmonic shell. In particular, it is
possible to determine new equilibrium positions or to make
stable an equilibrium position which results unstable for the
bare particle.

Let us consider, for instance, the case of a dielectric cyl-
inder of radius a and length L with the major axis aligned
along the ẑ direction. We may assume that the polarizability
of such a particle is uniaxial, as

�� e = �e
zzẑẑ + �e

t I�t, �11�

where the components of �� e may be derived either by inter-
polating functions27 or by remembering that, for a finite
length electrically thin cylinder, the SCS �and, consequently,
the polarizability� is proportional to the one of the infinite
case, through the effective length of the object.8,21,29 Interest-

ingly, expression �11� holds, in general, for any given elon-
gated symmetrical particle. For instance, a prolate spheroid
may be described by a closed-form uniaxial polarizability
tensor,27,29 for which it is well known that, when the imping-
ing electric field is parallel to one of the three main axes, no
torque is exerted. If the spheroid is made of a regular dielec-
tric with �r	1, the direction of the torque components is
independent from the magnitude of �r, and, since �e

zz	�e
t ,

the equilibrium positions along the minor axes are unstable,
so that the particle tends to align with the major axis along
the impinging electric field direction.29

Since the relative amplitudes of the tensor elements deter-
mine the nature �stable or unstable� of the equilibrium posi-
tions by using the polarizabilities derived for the infinite
length coated cylinder �see previous section�, we may now
find some regions in the dielectric plane described by ��c ,�r�
such that unstable equilibrium positions for the bare particle
may be turned to stable ones for the coated particle, and vice
versa.

( )e,c
⊥� �

� �α ω��
( )e,c

⊥� �
� �α ω��

pω ω

β

pω ω

β

FIG. 5. �Color online� Normalized complex polarizability for a dielectric nanorod covered with a plasmonic coating, whose permittivity
follows Drude dispersion �electric field orthogonal to the symmetry axis�.
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� �α ω�� ( )e,c
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� �α ω��

pω ω

σ

pω ω

σ

FIG. 6. �Color online� Normalized complex polarizability for a dielectric nanorod �electric field orthogonal to the symmetry axis� covered
with a plasmonic coating whose permittivity follows Drude dispersion for ��0.67 and assuming losses to vary according to �c=10−��p.
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In Fig. 7, region plots, referred to the magnitude of
the complex polarizability tensor elements of a dielectric
cylindrical nanorod with �r=2 covered by the same plas-
monic shell as in the previous example, are reported.
The colored area in the two plots corresponds to the points
for which �Re��e

cp������ �Re��e
co����� and �Im��e

cp�����
� �Im��e

co�����, respectively, that is when both real and
imaginary parts of the orthogonal polarizability are greater
than the longitudinal ones.

From Fig. 7, it is possible to determine a proper parameter
range in which the acting torque may be effectively con-
trolled by the plasmonic behavior of the cover. In particular,
when real and imaginary parts of the orthogonal polarizabil-
ity are both greater than the ones of the longitudinal polariz-
ability, the illuminated nanorod may experience an anoma-
lous torque, leading to the alignment of the particle along the
direction of the minor axis. This position, which for uncov-
ered particles is usually an unstable one, turns out to be a
stable equilibrium position in the case of the covered par-
ticle. This is only one of the possibilities offered by the new
degrees of freedom introduced by plasmonic cloaking for
this particular configuration. Further possibilities result also
from the exploitation of the cover material dispersion, which
may be used to switch equilibrium positions from stable to
unstable ones, according to the plots in Fig. 7.

IV. OPTICAL FORCES ON A CLOAKED RAYLEIGH
PARTICLE NEAR A DIELECTRIC HALF SPACE

So far we have considered only particles in free space. In
order to show how the new possibilities offered by plas-

monic cloaking can be applied also to more complex sce-
narios, we consider now the case of a Rayleigh particle
placed near the interface of a dielectric half space and illu-
minated by an external field E0, as shown in Fig. 8.

In the quasistatic limit, the total electric field at the sphere
position may be written as26

E = 
I� −
�e

�0
���S�
−1

· E0, �12�

where the tensor S� is the linear response of an electric dipole
in presence of the half space �polarizability is assumed to be
a constant but also anisotropic media may be considered sim-
ply by changing �e when varying the polarization of the
applied field�. Assuming that the distance between the object
and the surface is electrically small, in the long-wavelength
limit S� is uniaxial, and its elements are related only to the

β β

( ) ( )cp co
e eα ω α ω� � � �<� � � ��� �� ( ) ( )cp co

e eα ω α ω� � � �<� � � ��� ��

ẑ

ŷ

0
cp
e↑E α

ẑ

ŷ

0
cp
e↑E α

pω ω

β

pω ω

β
L

y

x̂
0
co
e

←⎯⎯⎯E
α

2 L

y

x̂
0
co
e

←⎯⎯⎯E
α

2

FIG. 7. �Color online� Region plots referred to the magnitude of the complex polarizability tensor elements of a dielectric nanorod with
�r=2, covered by the same plasmonic shell used in Fig. 5. White areas represent the points at which the relations shown in the insets are not
satisfied.

ŷ ŷ

a
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sε
x̂

d
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sε
x̂

rε
b

d

FIG. 8. �Color online� A Rayleigh spherical particle placed
above a dielectric flat surface �left�. Rayleigh spherical particle cov-
ered with a plasmonic shell placed above a dielectric flat surface
�right�.
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relative distance from the particle and to the electric proper-
ties of the half space, that is to its relative permittivity �s,
as26

S� =
1

8d3

�s − 1

�s + 1�1 0 0

0 2 0

0 0 1
� =

1

8d3��1 0 0

0 2 0

0 0 1
� , �13�

being � the Fresnel reflection coefficient, and d the distance
of the surface from the center of the particle. As we can see
from expression �13�, when d→
 we obtain the response of
a particle in free space while for any other value of d, pro-
vided that it is smaller than the wavelength, we may evaluate
the dipolar coupling. If the propagation vector lies in the xy
plane, no force is exerted along ẑ, due to the symmetry of the
problem. Consequently, if we consider a plane-wave imping-
ing on the sphere with the electric field directed along ẑ, the
force components are given by26

Fx =
�E0z�2�0

2
Re
8d3�e�jk0x��

8�0d3 + ��e

 ,

Fy =
�0�E0z�2

2
Re
8d3�e�jk0y��

8�0d3 + ��e
+

12d2��e�2�

�8�0d3 + ��e�2

 �14�

while in the orthogonal polarization it is found

Fx =
�0

2
Re
4d3�e�jk0x��� 2�0�E0x�2

8�0d3 + ��e
+

�0�E0x�2

4�0d3 + ��e
�
 ,

Fy =
�E0x�2�0

2
Re
8d3�e�jk0y��

8�0d3 + ��e
+

12d2��e�2�

�8�0d3 + ��e�2



+
�E0y�2�0

2
Re
4d3�e�jk0y��

4�0d3 + ��e
+

6d2��e�2�

�4�0d3 + ��e�2

 .

�15�

In the case of a covered sphere, we are able to reduce the
acting forces �mainly related to the radiation pressure�, in the
same way as for the configurations considered in the previ-
ous sections. In fact, by inserting �e

cs��� from Eq. �5� in Eqs.
�14� and �15�, we easily obtain by inspection that all the
force components vanish if both the real and the imaginary
parts of the polarizability of the coated spherical particle
�e

cs��� vanish.
Interestingly, a similar approach may be used also for cy-

lindrical particles, simply by substituting the proper polariz-
ability �e

	 ��� or �e
����, according to the polarization of the

external field, and by using for S� the form

S� =
1

2d2

�s − 1

�s + 1�1 0 0

0 1 0

0 0 0
� . �16�

It is well known that, when a dielectric particle is close to the
interface, it may experience an attractive force directed in the
opposite direction of propagation of an normally incident
illuminating field, due to the interaction of the dipole with its
own reflected evanescent field.26 When coating the particle,
the force does not depend only on the distance d anymore but

it can be changed also through the electric permittivity of the
cover �c���.

Let us consider, for instance, the case of a plane wave
with the electric field directed along ẑ and k0=ky, normally
impinging on the planar surface separating the vacuum and
the material. In the case of a spherical particle placed in the
vacuum half space at a distance d from the surface, Eq. �14�,
after some manipulation, simplifies as

Fy =
�0�E0�264d3

2�8�0d3 + ��e
cs�2
� k0

�0
Im��e

cs� +
3���e

cs�2

16d4 �
=

�0�E0�264d3

2�8�0d3 + ��e
cs�2

��t +
3���e

cs�2

16d4 � . �17�

In this expression, we straightforwardly recognize the contri-
bution given by the total SCS �t of the particle while the last
term is due to the interaction of the particle with the surface.
The zeroes of Fy occur then at

�t = −
3���e

cs�2

16d4 �18�

while the direction of the force is given by sin��t
+3���e

cs�2 /16d4�. From expression �18� we may conclude
that, for a regular dielectric lossless substrate ��	0�, the
zeroes of Fy are determined by negative values of �t. Such a
condition may be achieved if also the imaginary part of the
polarizability is negative, and this may happen through a
proper choice of the plasmonic properties of the shell sur-
rounding the particle, as described, for instance, in the ex-
ample reported in Figs. 2 and 3. Similar conclusions may
also apply for the cylindrical case.

From the previous analysis, it is clear that the light force
upon a particle on a dielectric plane can be controlled
through the distance d and the dispersive behavior of the
material composing the shell. A suitable design may, thus,
allow to engineer the small scatterer response with interest-
ing applications in particle trapping and manipulation.

V. CONCLUSIONS

In this paper, we have proposed a theoretical analysis
combining optical force calculation to the electromagnetic
cloaking formulation, in order to gain further physical in-
sights and explore new possibilities for the manipulation of
nanoparticles. First, we have shown that the same conditions
used to make spherical and cylindrical nanoparticles invis-
ible to the electromagnetic field by using the scattering can-
cellation approach, can be straightforwardly employed also
to minimize gradient and scattering optical forces exerted by
the illuminating field on the same covered nanoparticles.
These results have been verified through proper full-wave
simulations considering properly both dispersion and losses
of the plasmonic materials used to design the cloaks. We
have also extended our speculation to the case of optical
torques exerted on spheroidal and cylindrical Rayleigh par-
ticles, deriving the conditions to obtain stable equilibrium
positions. This investigation led to the interesting result that,
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anomalously, the usual unstable equilibrium positions of un-
covered particles may turn out to be stable ones when prop-
erly covering the particles. The additional degrees of free-
dom introduced by the plasmonic cloaking may be of interest
in many nanotechnology applications. Finally, in order to
apply the proposed theoretical speculations to more complex

cases, we have derived the conditions for minimizing optical
forces exerted on a cloaked Rayleigh particle placed above a
dielectric half space. Such results may be straightforwardly
extended to typical configurations used in several application
fields, to obtain, for instance, improved biological sensing,
optical trapping, and probing.

*FAX: �39.06.57337026; bilotti@uniroma3.it
1 A. Alù and N. Engheta, Phys. Rev. E 72, 016623 �2005�.
2 A. Alù and N. Engheta, J. Opt. A, Pure Appl. Opt. 10, 093002

�2008�.
3 A. Alù and N. Engheta, Opt. Express 15, 3318 �2007�.
4 A. Alù and N. Engheta, Opt. Express 15, 7578 �2007�.
5 S. Tricarico, F. Bilotti, A. Alù, and L. Vegni, Phys. Rev. E 81,

026602 �2010�.
6 A. Alù and N. Engheta, Phys. Rev. E 78, 045602�R� �2008�.
7 M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. E 75,

036603 �2007�.
8 F. Bilotti, S. Tricarico, and L. Vegni, New J. Phys. 10, 115035

�2008�.
9 F. Bilotti, S. Tricarico, and L. Vegni, IEEE Trans. Nanotechnol.

9, 55 �2010�.
10 M. G. Silveirinha, A. Alù, and N. Engheta, Phys. Rev. B 78,

075107 �2008�.
11 S. Tricarico, F. Bilotti, and L. Vegni, J. Eur. Opt. Soc. Rapid

Publ. 4, 09021 �2009�.
12 R. W. Ziolkowski, Phys. Rev. E 63, 046604 �2001�.
13 S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, Phys.

Rev. Lett. 102, 113602 �2009�.
14 V. Wong and M. A. Ratner, Phys. Rev. B 73, 075416 �2006�.
15 P. C. Chaumet and M. Nieto-Vesperinas, Opt. Lett. 25, 1065

�2005�.
16 A. H. Sihvola, Electromagnetic Mixing Formulas and Applica-

tions �IEE Press, London, UK, 1999�.
17 J. Avelin, R. Sharma, I. Häninnen, and A. H. Sihvola, IEEE

Trans. Antennas Propag. 49, 451 �2001�.
18 J. Avelin and A. H. Sihvola, Microwave Opt. Technol. Lett. 32,

60 �2002�.
19 R. G. Newton, Am. J. Phys. 44, 639 �1976�.
20 L. Novotny and B. Hecht, Principles of Nano-Optics �Cambridge

University Press, Cambridge, England, 2006�.
21 J. D. Jackson, Classical Electrodynamics �Wiley, New York,

USA, 1998�.
22 P. C. Chaumet and A. Rahmani, Opt. Express 17, 2224 �2009�.
23 N. I. Grigorchuk and P. M. Tomchuck, Low Temp. Phys. 33, 851

�2007�.
24 Y. Harada and T. Asakura, Opt. Commun. 124, 529 �1996�.
25 M. G. Silveirinha, Phys. Rev. E 73, 046612 �2006�.
26 P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119

�2000�.
27 J. Venermo and A. Sihvola, J. Electrost. 63, 101 �2005�.
28 P. L. Marston and J. H. Crichton, Phys. Rev. A 30, 2508 �1984�.
29 J. A. Stratton, Electromagnetic Theory �McGraw-Hill, New

York, USA, 1941�.

TRICARICO, BILOTTI, AND VEGNI PHYSICAL REVIEW B 82, 045109 �2010�

045109-8

http://dx.doi.org/10.1103/PhysRevE.72.016623
http://dx.doi.org/10.1088/1464-4258/10/9/093002
http://dx.doi.org/10.1088/1464-4258/10/9/093002
http://dx.doi.org/10.1364/OE.15.003318
http://dx.doi.org/10.1364/OE.15.007578
http://dx.doi.org/10.1103/PhysRevE.81.026602
http://dx.doi.org/10.1103/PhysRevE.81.026602
http://dx.doi.org/10.1103/PhysRevE.78.045602
http://dx.doi.org/10.1103/PhysRevE.75.036603
http://dx.doi.org/10.1103/PhysRevE.75.036603
http://dx.doi.org/10.1088/1367-2630/10/11/115035
http://dx.doi.org/10.1088/1367-2630/10/11/115035
http://dx.doi.org/10.1109/TNANO.2009.2025945
http://dx.doi.org/10.1109/TNANO.2009.2025945
http://dx.doi.org/10.1103/PhysRevB.78.075107
http://dx.doi.org/10.1103/PhysRevB.78.075107
http://dx.doi.org/10.2971/jeos.2009.09021
http://dx.doi.org/10.2971/jeos.2009.09021
http://dx.doi.org/10.1103/PhysRevE.63.046604
http://dx.doi.org/10.1103/PhysRevLett.102.113602
http://dx.doi.org/10.1103/PhysRevLett.102.113602
http://dx.doi.org/10.1103/PhysRevB.73.075416
http://dx.doi.org/10.1364/OL.25.001065
http://dx.doi.org/10.1364/OL.25.001065
http://dx.doi.org/10.1109/8.918620
http://dx.doi.org/10.1109/8.918620
http://dx.doi.org/10.1002/mop.10091
http://dx.doi.org/10.1002/mop.10091
http://dx.doi.org/10.1119/1.10324
http://dx.doi.org/10.1364/OE.17.002224
http://dx.doi.org/10.1063/1.2746860
http://dx.doi.org/10.1063/1.2746860
http://dx.doi.org/10.1016/0030-4018(95)00753-9
http://dx.doi.org/10.1103/PhysRevE.73.046612
http://dx.doi.org/10.1103/PhysRevB.61.14119
http://dx.doi.org/10.1103/PhysRevB.61.14119
http://dx.doi.org/10.1016/j.elstat.2004.09.001
http://dx.doi.org/10.1103/PhysRevA.30.2508

